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A note on the stability of a cylindrical vortex she& 

By RICHARD ROTUNNO 
National Center for Atmospheric Research, Boulder, Colorado 80307 

(Received 1 June 1977 and in revised form 3 January 1978) 

An inconsistency in a previous stability analysis of a cylindrical vortex sheet is resolved. 
It is found that disturbances with azimuthal wavenumbers m = 1 and 2 are stable, 
whereas previously the stability of these modes was uncertain. It has been hypothesized 
that the multiple-vortex phenomenon is initiated by such an instability (Ward 1972). 
Since double vortices (m = 2) arise, we are led to  consider a central downdraft sur- 
rounded by a uniform updraft; for a non-zero vertical wavenumber 7, the modes 
m = 1 and 2 are destabilized. Our theory is supported by the observation that double 
vortices tend to form as intertwining spirals (i.e. they have vertical structure). 

1. Introduction 
Michalke & Timme (1967) investigate the stability of a number of idealized flow 

fields pertaining to shear stability in cylindrical co-ordinates. The flow models are 
typically two or more concentric cylinders each of which is characterized by its mean 
circulation r. A certain inconsistency in their analysis has been resolved and is the 
subject of this article. 

Consider the model consisting of two concentric cylinders; the inner cylinder is 
stagnant (I’ = 0) while the outer cylinder moves irrotationally (I’ = r0, a constant). 
The two regions are separated by a cylindrical vortex sheet (i.e. since the vertical 
vorticity 5 = r-laI’/ar, the vorticity is everywhere zero except at  the interface, where 
it is infinite). The result of the linear inviscid stability analysis of Michalke & Timme 
(1967) is that all azimuthal wavenumbers are unstable. Now consider the model 
consisting of three concentric cylinders; t,he inner and outermost cylinders have 
I’ = 0 and r = r0, respectively. The cylinder between these two has I’ = ar2+b (i.e. 
is a region of constant vorticity), where the constants are chosen such that the mean 
azimuthal velocity V is continuous at  the interfaces. Michalke & Timme (1  967) and 
Busse (1968) find that all azimuthal wavenumbers m except rn = 1 and 2 are unstable. 
The inconsistency is that the characteristic equation for the model indicates that 
m = 1 and 2 are stable even in the limit of a vanishingly thin middle cylinder. Clearly, 
t,his limit is the model consisting of two concentric cylinders, the analysis of which 
indicates that all modes are unstable. 

This problem has taken on new importance apart from its intrinsic academic 
interest. It has been hypothesized by Ward (1972) and Davies-Jones (1976) that 
multiple tornadic vortices are due to the instability of a cylindrical vortex sheet. 
Multiple vortices are observed in the laboratory (Ward 1972) as well as in nature 
(Fujita 1971). The author’s interest in this problem was stimulated by Ward’s (1972) 
experiment, where it is observed that the single vortex ‘splits’ into two vortices as a 
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FIUURE 1. Schematic diagram of idealized flow whose stability is considered. 

certain critical swirl ratio? is reached. Ward's hypothesis that these vortices are due 
t o  the instability of a cylindrical vortex sheet seems plausible. However, the stability 
analysis of Michalke & Timme (1967) leaves the question concerning the stabiIity of 
m = 1 and 2 unanswered. 

We have found that the model consisting of two concentric cylinders was treated 
incorrectly by Michalke & Timme (1967) and that modes m = 1 and 2 me stable. 
This implies that the multiple-vortex phenomenon is more complex than their simple 
shear-flow model would indicate. 

At least two effects can destabilize these modes. Busse (1968) found that a skewed 
upper or lower surface destabilizes m = 1 and 2. Although there are no such skewed 
surfaces in Ward's model, we conjecture that the lower boundary layer may affect 
the flow stability. Another way in which these modes may become unstable is through 
the existence of substantial radial shear in the mean vertical velocity at the interface 
between the cylinders. Ward's experiment showed the existence of a central down- 
draft surrounded by an updraft. This effect can easily be incorporated in our analytical 
considerations and will be discussed later. 

2. Derivation of the characteristic equation 
Consider the flow in figure 1. There is an inner cylindrical region 0 < r < R con- 

taining a uniform downdraft - W, in which there is no azimuthal motion (I? = r V = 0). 
The surrounding region r > R has a uniform updraft W, and moves irrotationally 
(I? = I?,, a constant). The vorticity is everywhere zero except at  r = R, where it is 
infinite. That is, the vertical vorticity < = r-liW/ar and the azimuthal vorticity 

and 2nQ is the volume flow rate through the chamber. 
t The swirl ratio is defined as RJ?(R)/(BQ), where R is the radius of the vortex chamber 
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7 = -awl& take on infinite values at r = R. We wish to study the stability of this 
flow with respect to small displacements c of the material boundary separating the 
inner and outer regimes, 

The flow in either region is irrotational, i.e. V x u = 0, where u is the velocity vector 
in cylindrical co-ordinates. Thus u = V#, where # is the velocity potential. In  region 1 

and in region 2 

# = -W0z+#, 

+ = r , e+~ ,z+# , .  
The independent variables r,  0 and z are defined in figure 1. 

The equation describing the displacement of the vortex sheet is 

The vortex sheet acts as the outer boundary of the inner region, hence 

By assuming that products of perturbation variables are negligible, we obtain 

Similarly, the vortex sheet acts as the inner boundary of the outer region. Thus 

Equations (2.4) and (2.5) are kinematical conditions. The dynamical condition 
which must be met is that the pressure be continuous across the interface, i.e. 

- P2)7=R+5 = O -  (2.6) 

The pressure in an irrotational flow is (by Bernoulli’s theorem) 

P = constant -p(a#/at + &[u2 + a2 + ~ 2 1 ) .  

For the inner region, 

= constant - p  

Neglect of terms quadratic in the perturbation quantities leads to 

PI = constant -p(a#l/at  - J& a#&). 
In  the outer region, 

P2 = constant - p  (a,ot 2 + - 2[( 1 %  r0 +~”)“(.+3”), R+<ae 
or after linearization 

( 2 . 7 ~ )  

The third term in the brackets appears to have been omitted in the analysis of Michalke 
& Timme (1967). Leaving this term out of our analysis leads to the result that all 
azimuthal wavenumbers are unstable. The inclusion of this term yields a character- 
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istic equation in complete accord with the analyses for three concentric cylinders of 
both Michalke & Timme (1967) and Busse (1968). The dynamical condition is 

Equations (2.4), (2.5) and (2.9) form a linear system for three variables: 6, q5, and q5,. 
We solve this system for a particular Fourier component ei(m5+yz) with the knowledge 
that any general disturbance can be described by an appropriate superposition of 
such components. The velocity potential q5 satisfies Laplace's equation, i.e. 

r~-+r--(yV+m2)q5 az4 aq5 = 0. (2.10) 
ar2 ar 

The general solution of (2.10) is 

q5 = (B, I,(yr) + B, K,(yr)) ei(me+yz), (2.11) 

where B, and B, depend on t and Ip(x)  and Kp(x)  are modified Bessel functions of the 
first and second kinds, respectively. We require that q5 be bounded both at  the origin 
and infinity. Thus 

and q5z = B2Km(yr) ei(&+y2). (2.12 b)  

The solution for the displacement 5 is of the form 

q5, = B, Im(yr) ei(me+yz) (2.12a) 

= ~ ( q  ei(7=9+~z), (2.13) 

The next step is to substitute (2.12) and (2.13) into (2.4), (2.5) and (2.9). Note that 
the constant in (2.9) is set to zero since we are not concerned with solutions indepen- 
dent of r,  0 and z. The result of this substitution is that 

{yIVa-,(yR) - mR-lI,(yR)}B, = aD/at - iyW, D, (2.14) 

{ -yK,_,(yR)-mR-'K,(yR))B, = aD/8t+(imro/R2+iyWo) D, (2.15) 

a 4  aB2 
U y R )  at - Km(7W at - ~YW,{I,(yR) B, + &a(?IR) Bzl 

imr r z  -- *K,(yR)B,+<D = 0. (2.16) 
R2 R 

B, and B, may be eliminated from (2.14)-(2.16) after some algebra. The result is 

p mT;  +--ID r; 1 = 0, (2.17) 
a+p R4 R4a+P 

We assume D N eUt and define the non-dimensional quantities 5 = vR2/r0, 7 = yR 
and 8 = WoR/ro. Equation (2.17) then becomes 
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azimuthal wavenumbers m = 3, 4, 5 derived from (3.1) (6‘ = 0). 
FIGURE 2. Non-dimensional growth rate Sr vs. the non-dimensional axial wavenumber 7 for 

The solution is obtained from the quadratic formula, i.e. 

If the quantity under the square root is positive, the particular configuration (m, 7) 
is unstable and grows exponentially with time. The following sections examine par- 
ticular limiting cases of (2.20). 

3. Case I: zero mean vertical velocity 
Equation (2.20) becomes, after setting S = WoR/r0 = 0, 

We consider the subcase where 7 -+ 0 so that direct comparison can be made with 
previous results. As p-. 0, a = p N m-1. Hence 

(y= -ri m rt h[m(m - a)]&. (3.2) 

This result may be compared with equation (4.46) of Michalke & Timme (1967) (set 
7 = 0 and take the limit of Pi as 8-+ 1) or with Busse’s (1968) equation (5.7) (take the 
limit of this equation as p-+ I) .  Thus, except for modes m = 1 and 2, the results of 
this analysis are analogous to those for the stability of a plane shear flow. There all 
wavelengths are unstable; the smallest waves growing most rapidly. 
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FIGURE 3. wavenumber 7 

The real part of d is the non-dimensional growth rate 5,. Figure 2 shows a graph of 
d,, vs. $7 [derived from (3.1)] for m = 3 , 4  and 5. The modes m = 1 and 2 are stable for 
all $7. Figure 2 indicates that, for a given m, the most unstable wave is one which has 
no axial variation ($7 = 0). Remember that S = 0 implies that there is no radial shear 
in the mean vertical velocity, and hence that the only way in which the disturbances 
may grow is by feeding upon the energy in the radial shear in the mean azimuthal 
velocity. For large $7, the wavenumber vector becomes nearly parallel to the mean 
flow vector and thus the wave is not as strongly affected by the mean flow. In  the 

which demonstrates the stability of the disturbance in this limit. 
limit $7 % m B 1, (3.1) becomes 5 qiyp ,  (3.3) 

4. Case II: axisymmetric disturbances, m = 0 

Consider (2.20) with m = 0. Then 

where now a = l O ( $ 7 ) / $ 7 U 7 4 ,  P = &J($7)/$7~0($7)* (4.2a, b )  

(4.3) 

which shows that these disturbances are sta,ble. In  the limiting case $7 % 1, 

(4.4) 
We may establish the stability criterion as follows. If S > (2$7)-*, the disturbance 
grows indefinitely. The larger the wavenumber, the easier it is to  satisfy this criterion. 
Figure 3 is a graph of d,, vs. $7 [derived from (4.1)] for S = 0.4, 0.6, 0.8 and 1.0. Note 
further that in the limit of large 7 the unstable waves do not propagate. 

In  the limiting case 7 < 1, d = i$7(S f * x 24, 

d = f ($7282-  *$7)*. 
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FIGURES 4(a, b ) .  For legend see next page. 

5. The full characteristic equation 
Having examined the limits S = 0 and m = 0, respectively, we are in a better 

position to understand the behaviour of the full characteristic equation (2.20). 
Figure 4 (a )  displays 17~ us. -j7 for S = 0.2, 0.4, 0.6, 0.8 and 1.0 with m = 1 .  Comparison 
of figures 3 and 4 (a )  indicates that for a given (S, 7) the disturbance with the higher 
azimuthal wavenumber is more unstable. The reason for this is as follows. When 
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FIUURE 4. Non-dimensiond growth rate 5r vs. the non-dimensional axial wavenumber 9 for 
S = 0.2, 0.4, 0.6, 0.8 and 1.0 derived from (2.2). (a) m = 1, ( b )  m = 2, ( c )  m = 3 and (d )  m = 4. 

m = 0, the only instability mechanism is the radial shear in the mean vertical velocity. 
Having m and y non-zero means that the wave can pick u p  energy from the radial 
shear in both the mean vertical and the mean azimuthal velocity. Notice that if 
8 $: 0 the modes m = 1 and 2 are unstable for sufficiently large 7. Hence the radial 
shear in the mean vertical velocity destabilizes these modes. 
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Figures 4 (6)-(d) are the same as figure 4 (a )  except that m = 2, 3 and 4, respectively. 
Again, the growth rates are higher for larger m. 

6. Radial angular momentum flux 
Lilly (1969) argued that models which rely on an outward eddy diffusion to balance 

the inward advmtion of angular momentum are irrelevant to natural vortices. Using 
Hoecker’s (1960,1961) photogrammetric data, Lilly calculated the eddy radial angular 
momentum flux to be inward. He then hypothesized that this eddy flux is of second- 
order importance compared with the surface drag and hence neglected eddy fluxes in 
his model. 

Using the solutions in 8 2, we can compute the radial angular momentum flux due 
to the unstable waves: - 

I$ = (ZLiwi)r=R+S, i = 1,2 ,  

where the bar? denotes a wavelength average. It is easy to show that in region 1 

The result in region 2 would also be zero if the term given in (2.8) had been omitted. 
In region 2, 

(6-3) 
ro g r  F - - --. ’- R 2 2  

and hence 

Thus for a growing disturbance (a, > O ) ,  there is an associated inward radial angular 
momentum flux. 

7. Discussion 
The usual dilemma of this type of analysis is that the most unstable waves correspond 

to the smallest-scale disturbance. However, one resolves this problem to some extent 
by assuming that these small scales are quickly damped by a diffusion process. 
Analysis of flows with transition layers of finite thickness indicate that the most 
unstable waves have wavelengths of the same order as the transition-layer thickness. 
Indeed, the analysis for three concentric cylinders of Michalke & Timme (1967) and 
Busse (1  968) yields this result. 

On the basis of this knowledge, we offer the following tentative explanation for the 
vortex ‘ splitting ’ process. The ‘vortex ’ as seen in Ward’s (1 972) experiment is actually 
a cylindrical vortext sheet of finite thickness. For a small swirl ratio the radius of the 
cylinder tends to be small, hence modes higher than two correspond to rather short 
azimuthal wavelengths which are probably damped. Modes m = 1 and 2 are stable. 
As the swirl ratio increases, the mean radius R of the sheet increases and the de- 
stabilizing effect of the radial shear of the mean vertical velocity becomes more 
important. We conjecture that a most unstable wave will emerge whose azimuthal 
and vertical wavelengths are comparable to the finite vortex sheet thickness and 

t Recall that ab = &(ab* +a*b), where a* is the complex conjugate of a. 
26 F L M  87 
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FIGURE 5 .  Schematic diagram of vortex ‘splitting’ process. 

hence to each other. It is not unreasonable to expect that the wave 7 N m = 2 may 
be that wave. 

There is evidence (F. Leslie, private communication) that the vortex ‘splitting’ 
process has vertical structure. The first step in the vortex splitting process is a 
‘wrapping around’ of two vortices as shown in figure 5. As the swirl ratio is increased, 
the two vortices ‘straighten out ’ and separate. The description of the latter process 
appears to be beyond the reach of linear analysis. 

8. Conclusions 
We have resolved a certain inconsistency in Michalke & Timme’s (1967) stability 

analysis of a cylindrical vortex sheet. It is found that azimuthal wavenumbers 
m = 1 and 2 are stable, whereas previously the stability of these modes was un- 
certain. 

The cylindrical vortex sheet model is generalized to include a central downdraft 
surrounded by an updraft. We find that for a large enough swirl ratio modes m = 0, 
1 and 2 are unstable (for axial wavenumbers 7 $: 0). We speculate on the implications 
of this for the multiple-vortex phenomenon. 

There has been some controversy over the sign of the eddy radial flux of angular 
momentum in actual tornadoes. This analysis indicates that the growing waves are 
associated with an inward fiux. 

The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. 
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